Accepted paper with abstract, SoCG'09

Rom Pinchasi

Halving Lines and Measure Concentration in the Plane
Given a set P of n points in the plane and a collection of k halving lines of $P I_{1}, \ldots, I_{k}$, indexed according to the increasing order of their slopes, we denote by $d\left(I_{j}, l_{j+1}\right)$ the number of points in P that lie above l_{j+1} and below l_{j}. We prove an upper bound of $O\left(n k^{1 / 3}\right)$ for the sum $\Sigma_{j=1 . . k-1} d\left(I_{j}, l_{j}\right.$ $+{ }^{1}$). We show how this problem is related to the halving lines problem and provide several consequences about measure concentration in \Re^{2}.

